Alle Tier- und Pflanzenarten sind auf genetische Vielfalt angewiesen, um sich evolutionär an lebensbedrohliche Umweltänderungen (z.B. Klimawandel) anpassen zu können. Mutationen alleine wären eine extrem langsame Quelle der überlebenswichtigen „adaptiven“ Genvarianten, vor allem bei langlebigen Organismen wie Waldbäumen. Eine Arbeitsgruppe um Christian Lexer von der Universität Wien konnte nun gemeinsam mit WissenschafterInnen der kanadischen University of British Columbia (UBC) anhand von Pappelarten nachweisen, dass adaptive Genvarianten auch von Genaustausch mit verwandten Arten stammen können. Die Ergebnisse sind kürzlich in hochkarätigen Fachjournalen erschienen und werden aktuell am zweiten Internationalen Weltkongress für Evolutionsbiologie in Montpellier diskutiert.
Die Fähigkeit zur Anpassung an sich rasch ändernde Umweltbedingungen ist überlebenswichtig für alle Tier- und Pflanzenarten, auch für den Menschen. Die dafür notwendigen „adaptiven“ Genvarianten können von seltenen, neuen Mutationen im Genpool stammen, oder sie sind bereits im „Repertoire“ einer Art oder Artengruppe vorhanden. Eine bisher kaum verstandene Quelle adaptiver Genvarianten ist der Genaustausch über Artgrenzen hinweg, man spricht von „adaptiver Introgression“. Das kann geschehen wenn sich verwandte Arten kreuzen und die F1 Hybride vital und fruchtbar sind, die Artbarriere also noch nicht voll ausgeformt ist. So werden im Lauf von Generationen Gene oder ganze Chromosomenblöcke auf natürliche Weise zwischen verwandten Arten ausgetauscht. Dieser Vorgang ist an sich nicht selten und bereits von vielen Tier- und Pflanzenarten bekannt – sogar unsere eigenen Homo sapiens Vorfahren kreuzten sich mit Neandertalern.
Die Herausforderung für EvolutionsbiologInnen besteht darin, nachzuweisen dass die neu eingebrachten („introgressierten“) Genvarianten tatsächlich adaptiv sind. Ein solcher Nachweis erfordert 4 verschiedene Beweisspuren: Introgression, molekularer „Fußabdruck“ natürlicher Selektion in den betroffenen Gensequenzen, messbare Effekte der eingebrachten Genvarianten auf funktionelle Merkmale, Effekte dieser Merkmale auf die biologische „Fitness“, d.h. auf Überleben, Gedeihen, und Fortpflanzungserfolg.
Dem internationalen Forschungsteam des Departments für Botanik und Biodiversitätsforschung der Universität Wien und UBC gelang es, diese Beweiskette bei nahe verwandten nordamerikanischen Arten der „Modellbaumgattung“ Populus (Pappeln) zu erbringen. Die WissenschafterInnen entschieden sich für Pappeln als Modellsystem für ihre Studien, da es für sie qualitativ hochwertige Genomsequenzen und –karten gibt (ähnlich wie beim Menschen), da Pappelarten häufig „hybridisieren“, und da sie (noch) in großen natürlichen Populationen auf mehreren Kontinenten vorkommen. Eine wichtige Motivation des Teams lag auch in der enormen ökologischen Bedeutung adaptiver genetischer Variation bei Waldbäumen: Sie sind Schlüssel- oder „Schirmarten“ in Wäldern, weshalb die genetische Vielfalt bei Bäumen enorme Auswirkungen auf ganze Lebensgemeinschaften, Ökosysteme, und Nährstoffkreisläufe hat.
Um die Beweiskette für adaptiven Genaustausch zu erbringen, sequenzierten die WissenschafterInnen ganze Genome von hunderten Pappeln, ermittelten introgressierte Chromosomenblöcke und Gene mit Hilfe neuester bioinformatischer Verfahren, maßen die Effekte der eingebrachten Genvarianten auf dutzende Merkmale mit Fitness-Relevanz, und untersuchten deren Zusammenhang mit ökologischen Standortfaktoren wie Temperatur und Tageslänge. Die Ergebnisse unterstützen klar die Hypothese der adaptiven Introgression bei Bäumen am Beispiel der westlichen Balsampappel Populus trichocarpa – Hybridisierende Baumarten wie Pappeln können sich also adaptive, ökologisch wichtige Genvarianten quasi von verwandten Arten „ausborgen“. Eine spannende, offene Frage ist nun, wie oft adaptive Introgression auch bei anderen Baumarten oder generell in der Natur geschieht. Gerade bei langlebigen Organismen wie bei Bäumen ist die so gewonnene adaptive Vielfalt potentiell eine Chance für den Fortbestand von Arten angesichts globaler Umweltveränderungen wie dem Klimawandel.
Nicht minder wichtig ist die Frage nach den „evolutionsgenetischen Grenzen“ für derlei Vorgänge: verwandte Arten sind oft durch starke Kreuzungsbarrieren getrennt, an denen viele Gene oder sogar ganze Netzwerke von „Barriere-Genen“ beteiligt sind. Die Barrieren werden stärker je mehr Zeit seit dem letzten Artbildungs-Event vergangen ist. Dringender Forschungsbedarf besteht daher nach den vielfältigen Wechselwirkungen zwischen diesen „Barriere-Genen“ und den ökologisch vorteilhaften, adaptiven Genvarianten in den Genomen verwandter Arten. Diese Fragen mit Relevanz für die Grundlagen- und angewandte Forschung werden diese Woche am „II Joint Congress on Evolutionary Biology“ in Montpellier diskutiert.