Ein hoher Kornertrag eine anstrebenswerte Eigenschaft in Getreidearten. Blütchenfruchtbarkeit ist ein entscheidender Faktor, welcher die Anzahl der Körner pro Blütenstand in Getreiden mitbestimmt. Dennoch war bis vor Kurzem wenig über die genetischen Grundlagen von Blütchenfruchtbarkeit bekannt. Bei der Untersuchung dieses Faktors hat eine Gruppe von Wissenschaftlern aus Japan, Deutschland und Israel nun in Weizen den Locus Grain Number Increase 1 (GNI1) entdeckt, welcher einen beachtlichen Einfluss auf die Blütenfruchtbarkeit hat.
Eine erhöhte Anzahl fruchtbarer Blütchen hat einen gesteigerten Kornertrag zur Folge
Obwohl das am Locus befindliche GNI-A1 Gen zu einem niedrigeren Kornertrag führt, zeigten die Forscher, dass dessen Mutation, ein Allel mit eingeschränkter Funktion, eine erhöhte Anzahl fruchtbarer Blütchen und einen gesteigerten Kornertrag zur Folge hat. Aufgrund dieses positiven Effekts wurde diese mutierte Genvariante im Laufe der Weizendomestikation selektiert und ist heutzutage in vielen Weizensorten mit hohem Kornertrag zu finden.
Der Tribus der Triticeae umfasst mehrere wichtige Getreidearten, so zum Beispiel den Weizen (Triticum aestivum L.) und die Gerste (Hordeum vulgare L.). Eine der wichtigsten Folgen des Domestikationsprozesses ausgewählter Triticeae-Arten ist die gesteigerte Anzahl an Körnern bei den modernen Kulturvarietäten – dank einer erhöhten Blütenfruchtbarkeit.
Die Tribus Triticeae umfasst innerhalb der Süßgräser unter anderem wichtige Kulturgräser wie Weizen, Gerste und Roggen. Die Blüten- beziehungsweise Fruchtstände dieser Gräser sind als Ähren ausgebildet. Weltweit existieren mehr als 300 Arten in über 20 Gattungen.
Alle Pflanzen der Triticeae entwickeln während ihres Wachstums einen unverzweigten Blütenstand, welcher als Ähre bezeichnet wird. Im Weizen setzt sich die Ähre aus mehreren Ährchen zusammen, welche jeweils eine unbestimmte Anzahl an Korn-produzierenden Blütchen bilden. Während der Blütchenentwicklung produziert jedes Weizenährchen bis zu 12 potentiell fruchtbare Blütchenvorstufen. Jedoch sterben die meisten dieser potenziellen Blütchen und damit Körner (über 70 %) während ihrer Entwicklung ab. Es ist bekannt, dass die Kornanzahl pro Ährchen von der Fruchtbarkeit der einzelnen Blütchen abhängt. Trotzdem war die genetische Basis der Blütchenfruchtbarkeit bis vor kurzem noch weitgehend unerforscht. Eine internationale Gruppe von Wissenschaftlern, darunter mehrere Forscher des Leibniz-Instituts für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), hat nun in Zusammenarbeit die genetischen Grundlagen der Blütchenfruchtbarkeit in Weizen entschlüsselt.
Genomweite Assoziationsstudie der europäischen Winterweizensorten
Die Forscher konzentrierten sich dabei auf ein „Quantitatives Trait Loci“ (QTL), welches zuvor bei einer genomweiten Assoziationsstudie in europäischen Winterweizensorten gefunden worden war und für eine erhöhte Anzahl an Körnern pro Ährchen sorgt. Nach der Kartierung des QTLs identifizierten sie den Grain Number Increase 1 (GNI1) Locus und das dazugehörige Gen GNI-A1, welches in Triticeaen durch eine Genduplikation auf dem Chromosomenarm 2AL entstanden war. Die Wissenschaftler zeigten, dass das GNI-A1 Gen für einen Homöodomäne Leucin-Zipper Klasse I (HD-Zip I) Transkriptionsfaktor kodiert. Die Expression des Transkriptionsfaktors führt zu einer beeinträchtigten Entwicklung der Rachilla, der blütchentragenden Achse der Weizenährchen. Dies wiederum hat negative Auswirkungen auf die Blütchenfruchtbarkeit und den Kornertrag.
Domestikation des Weizens führte die reduzierte Expression von GNI1
Im Laufe der Domestikation des Weizens führte die reduzierte Expression von GNI1 zu fruchtbareren Blütchen und einer Zunahme der Kornzahl pro Ährchen. Die Forscher entdeckten bei zusätzlichen Analysen von ertragsstarken Weizen-Kulturvarietäten eine eingeschränkt funktionierende Allel-Form des Gens GNI-A1. Dieses mutierte Allel wurde in modernen Weizenarten mit hoher Blütchenfruchtbarkeit gefunden, was stark darauf hindeutete, dass es eine Erhöhung der Blütchenfruchtbarkeit bewirkt. Demnach waren im Laufe der Weizendomestikation Varietäten selektiert worden, welche das eingeschränkt funktionierende Allel trugen, da diese einen gesteigerten Kornertrag zeigten.
Der Erstautor der Studie, Dr. Shun Sakuma (IPK Gatersleben und Tottori University, Japan), welcher das Projekt unter Betreuung von Dr. Takao Komatsuda am National Institute of Agrobiological Sciences (derzeit am National Agriculture and Food Research Organization (NARO), Japan) initiiert hatte, betont: “Diese Studie zeigt zum ersten Mal einen direkten Zusammenhang zwischen erhöhter Blütchenfruchtbarkeit, höherer Kornzahl pro Ährchen und höherem Ernteertrag im Feldversuch bei Weizen.“ Das Projekt wurde von Dr. Sakuma in der Forschungsgruppe von Dr. Thorsten Schnurbusch am IPK Gatersleben fortgeführt. Weitere Experimente wurden gemeinsam mit Mitgliedern von drei anderen IPK-Forschungsgruppen sowie in Zusammenarbeit mit israelischen Wissenschaftlern der Hebrew University of Jerusalem durchgeführt.
Wirkung von GNI1 im Weizen ist nun deutlich
Ein weiteres Ergebnis der internationalen Zusammenarbeit zeigte, dass GNI-A1 ein Ortholog des Gersten-Gens Vrs1 ist, welches die laterale Blütchenfruchtbarkeit in Gerste kontrolliert und eine Hemmung der Blütchenentwicklung bewirkt.
Ähnlich wie das eingeschränkt funktionierende Allel von GNI-A1 im Weizen, sorgen die mutierten „loss-of-function“ Formen von Vrs1 wiederum für eine Erhöhung des Kornertrags. Dr. Komatsuda (NARO), welcher zuvor an der Aufklärung der molekularen Grundlagen von Vrs1 in Gerste beteiligt war, ist „erfreut, dass wir nun entdeckt haben, was GNI1 tatsächlich in Weizen bewirkt.“ Das Auftreten von GNI1/Vrs1 und die parallele Selektion des mutierten Allels steht im Einklang mit der “genetischen Hotspot-Hypothese“. Diese besagt, dass evolutionär relevante Mutationen tendenziell in spezifischen Genen und an spezifischen Positionen in Genen auftreten.Die Identifizierung und das Verständnis der genetischen Basis der Blütchenfruchtbarkeit eröffnen nun neue Wege zur Erweiterung des Wissens über die Pflanzenarchitektur, aber auch neue Möglichkeiten für die weitere Verbesserung des Kornertrags in Weizen. Denn, wie Dr. Schnurbusch (IPK) zum Ausdruck brachte: „Dieses Wissen kann uns dabei helfen, verwandte Gene zu finden, die in ähnlicher Weise arbeiten, um so die Getreideerträge weiterhin zu verbessern.“