Ein Team internationaler Forschern um Federico Baltar von der Universität Wien und José M González von der University of La Laguna konnte eine bislang unbekannte Gruppe Bakterien namens UBA868 als wichtige Akteure im Energiekreislauf des tiefen Ozeans identifizieren. In der Meeresschicht zwischen 200 und 1000 Metern sind sie maßgeblich am ökologischen Stoffkreislauf beteiligt.
Die Tiefsee, die Meeresschicht ab 200 Meter Tiefe, macht etwa 90 Prozent des weltweiten Meeresvolumens aus. Sie bildet das größte Habitat der Erde und beheimatet die größte Anzahl an Mikroorganismen. Diese Mikroorganismen tragen wesentlich zum Stoffkreislauf bei. Sie entnehmen organisches Material, das etwa aus Phytoplankton und Zooplankton stammt, wandeln es um und stellen es dem Ökosystem wieder als Nährstoffe zur Verfügung. So sind sie maßgeblich an der Fixierung und dem Kreislauf gelösten Kohlenstoffs beteiligt. Auch gelöste Schwefelverbindungen werden von Bakterien umgewandelt und dem Stoffkreislauf wieder zugeführt.
UBA868: mixotrophe energietreibende Kraft im Ökosystemen
UBA868 spielt eine bedeutende Rolle bei der Oxidation von Schwefelverbindungen und der Fixierung von Kohlenstoffdioxid und trägt damit wesentlich zum Energiehaushalt in der Tiefsee bei. „Interessanterweise ist UBA868 mixotroph. Das bedeutet, es kann also sowohl mit der Energie aus der Oxidierung von Schwefelverbindung CO2 fixieren, als auch organische Stoffe aufnehmen und diese zur Energiegewinnung nutzen“, erklärt Federico Baltar. Dieses Ergebnis widerlegt die bisher gängige Annahme, dass ausschließlich autotrophe Mikroorganismen (die CO2 als Kohlenstoffquelle nutzen) und heterotrophe Mikroorganismen (die auf organische Kohlenstoffquellen angewiesen sind) für die Regulierung des Kohlenstoffkreislaufs verantwortlich sind.
Um die Rolle von UBA868 im Ozean zu untersuchen, nutzte das Team eine Kombination aus verschiedenen genomischen Analysemethoden, wie Single-Cell Genomics, Community Metagenomics, Metatranscriptomics and Single-Cell Activity-Messungen. Die Analyse von Genbibliotheken aus verschiedenen, weltweiten Expeditionen bestätigte schließlich die allgegenwärtige Verbreitung und die globale Bedeutung dieser Bakteriengruppe. Diese Entdeckung trägt dazu bei, unser Verständnis von marinen Ökosystemen und der Fähigkeit der Ozeane, Kohlenstoff zu speichern, zu vertiefen. Gleichzeitig zeigt sie, wie wichtig es ist, auch mixotrophe Bakterien in den Fokus der Erforschung des Nährstoffkreislaufs der Ozeane zu stellen.