Höhlentropfsteine können in Verbindung mit den Daten aus sogenannten Baumringarchiven ein einzigartiges Archiv zur Erforschung natürlicher Klimaschwankungen über Zeiträume von mehreren hundert Jahren eröffnen. Das hat ein Forschungsteam mit Geowissenschaftlern der Universität Heidelberg und des Karlsruher Instituts für Technologie gezeigt. Die Wissenschaftler analysierten die Isotopenzusammensetzung von Sauerstoff in einem aus dem Kalk von Wasser gebildeten Höhlentropfstein in Süddeutschland. In Verbindung mit den aus Baumringen gewonnenen Daten konnten sie kurzfristige Schwankungen des Klimas in den vergangenen Jahrhunderten rekonstruieren und in Beziehung zu historisch belegten Umweltereignissen setzen.
Bislang ließen sich kurzfristige Klimaschwankungen über Zeiträume von mehreren hundert Jahren zumeist nur mithilfe von Baumringarchiven analysieren. Dazu werden unabhängige Messungen aus einer Vielzahl von Studien kombiniert, wie Geowissenschaftler Dr. Tobias Kluge vom Karlsruher Institut für Technologie (KIT) erläutert. Die Dicke von Baumringen, die im Bereich weniger Millimeter variiert, gibt Aufschluss über die Dynamik saisonaler Niederschläge. Daraus lassen sich Rückschlüsse auf die klimatischen Verhältnisse in der jeweiligen Wachstumsperiode ziehen. So sind nach den Worten von Dr. Kluge niederschlagsreiche Sommer insbesondere in kalten Jahren, niederschlagsreiche Winter dagegen in warmen Jahren zu erwarten.
Im Gegensatz zu Baumringen wurden Höhlentropfsteine bislang nur in Ausnahmefällen für die systematische Messung von Klimadaten und ihren jährlichen Variationen herangezogen. Entscheidend ist das in eine Höhle eindringende Regenwasser, dessen gelöster Kalk die Tropfsteine bildet. Dieses Wasser aus der Umgebung besteht aus Niederschlägen der warmen und der kalten Jahreszeit, die jeweils durch eine besondere Isotopenzusammensetzung des Sauerstoffs charakterisiert sind. Daraus können Analysen abgeleitet werden, ob und in welchen Jahren Winter- oder Sommerniederschläge dominierten.
Die Wissenschaftler aus Heidelberg und Karlsruhe haben einen Stalagmiten – einen aus dem Boden emporwachsenden Tropfstein – aus der Kleinen Teufelshöhle in der Fränkischen Schweiz untersucht. Dieser Stalagmit wuchs deutlich langsamer als vergleichbare Tropfsteine mit einer Rate von ein bis vier Zentimetern pro Jahrtausend, was einer jährlichen Wachstumsrate von etwa einer Haaresbreite entspricht. Die Wachstumszonen des Tropfsteins sind damit hundertmal dünner als ein Baumring. Nur wenige Zentimeter können somit Aufschluss über die klimatischen Bedingungen in tausend Jahren geben. Wie die Sauerstoffisotope zusammengesetzt sind, wurde mit der Ionensonde am Institut für Geowissenschaften der Universität Heidelberg gemessen. „Für die Analysen waren präzise Messungen in den nur wenigen Mikrometer großen jährlichen Wachstumszonen erforderlich, was nur mit einem solchen Forschungsgroßgerät möglich ist“, erklärt Prof. Dr. Mario Trieloff, der Leiter des Heidelberger Ionensondenlabors ist.
In den Klimadaten, die aus dem Tropfstein der Kleinen Teufelshöhle gewonnen wurden, offenbaren sich nach Angaben der Wissenschaftler regionale wie globale Umweltereignisse. Das ungewöhnlich kalte Jahr 1816, das in Europa und Nordamerika als „Jahr ohne Sommer“ in die Geschichte einging, geht auf einen Ausbruch des Vulkans Tambora in Indonesien im April 1815 zurück, möglicherweise verstärkt durch einen bislang unbekannten Vulkanausbruch sechs Jahre zuvor. Die Daten aus den Tropfsteinmessungen zeigen, dass es in dieser Zeit kalte Sommer und niederschlagsreiche Winter gab, verbunden mit ganzjährig auftretenden Überschwemmungen, die zu Missernten und Hungersnöten führten.
Aus den in dem Tropfstein gespeicherten Informationen lassen sich auch langzeitliche Klimaschwankungen ablesen wie die sogenannte Kleine Eiszeit, deren Kernzeitraum Ende des 16. Jahrhunderts begann und bis in das späte 17. Jahrhundert reichte. Diese Zeit war nach Angaben der Wissenschaftler durch häufige Überflutungen geprägt, die für die nicht weit von der Teufelshöhle entfernt gelegene Stadt Nürnberg historisch belegt sind. Die Klimadaten aus der Höhle konnten mithilfe eines Baumringarchivs aus der Umgebung verifiziert werden. Sie weisen auf kalte trockene Winter hin, wodurch sich die jährlichen Eis- und Schneeschmelzen verzögerten und zu starken kurzzeitigen Überschwemmungen mit katastrophalen Folgen führten, so Dr. Kluge vom Institut für Angewandte Geowissenschaften des KIT.