An der Bauhaus-Universität Weimar wird der Massenbaustoff Beton weiterentwickelt und im Rahmen des Forschungsprojektes »StimuCrete« in ein neues Zeitalter geführt. Mithilfe von innovativen Zusatzstoffen soll ein intelligenter Beton entstehen, welcher sowohl im frischen als auch im festen Zustand flexibel angepasst werden kann. Diese Innovation soll das digitale, automatisierte Bauen vorantreiben, aber auch die Lebensdauer von Bauwerken erhöhen. Rund 1,9 Millionen Euro investiert das Bundesministerium für Bildung und Forschung bis 2028 in die NanoMatFutur-Nachwuchsgruppe unter der Leitung von Luise Göbel, Juniorprofessorin für Werkstoffmechanik an der Fakultät Bau und Umwelt.
Langlebig, widerstandsfähig, formbar – Beton ist ein Hochleistungswirkstoff auf Basis von Zement, Kies und Wasser. Durch das Hinzufügen von Zusatzmitteln wie Verzögerer, Beschleuniger oder Verflüssiger können die Materialeigenschaften des Frischbetons oder des erhärteten Betons gezielt beeinflusst werden.
Das Problem: Einmal durch den Mischprozess und die Rezeptur festgelegt, kann der Beton nach der Herstellung nicht mehr angepasst werden. Oftmals kommt es jedoch durch wechselnde Umweltbedingungen und Rohstoffschwankungen zu Veränderungen, die das Fließverhalten von Beton oder seine Widerstandsfähigkeit ungewollt beeinflussen können. Das Forschungsteam um Jun.-Prof. Dr.-Ing Luise Göbel möchte Beton daher intelligenter machen.
Die Idee: Durch die Beifügung neuartiger Zusatzstoffe (Additive), welche durch äußere oder innere Anregung (Stimulus) aktiviert werden können, sollen ausgewählte Eigenschaften des Betons auch nach dessen Produktion aktiv beeinflusst werden können.
Materialeigenschaften nach Bedarf aktivieren
Im Projekt »StimuCrete – Funktionalisierung von Betonstrukturen durch stimuliresponsive Materialien« werden über einen Zeitraum von fünf Jahren zwei Ansätze verfolgt: Zunächst soll das Verhalten von frischem Beton aktiv gesteuert werden können. Dadurch könne das Material beispielsweise auf Knopfdruck erstarren.
»Dies ist insbesondere für automatisierte Fertigungsverfahren, darunter den sogenannten 3D-Beton-Druck, von Bedeutung«, erläutert Luise Göbel.
Gelingen soll dieses intelligente Materialverhalten durch die Entwicklung von Additiven, die sich infolge einer elektromagnetischen Anregung verändern und dadurch Einfluss auf die Frischbetoneigenschaften nehmen.
Zudem sucht das interdisziplinäre Team, das aus Materialwissenschaftler, Chemiker und einem Elektrotechniker besteht, neue Wege, um die Langlebigkeit von Betonbauwerken zu verbessern. Hierfür werden neuartige Kapseln entwickelt, die in das Material eingebracht werden und sich im Schadensfall öffnen. Dadurch könnten Mikrorisse im Beton selbstständig heilen und die Bewehrung wird vor schädigenden Substanzen geschützt.
»Durch selbstheilenden Beton wird die Baustruktur langlebiger und der manuelle Reparaturaufwand reduziert. Langfristig werden dadurch Ressourcen eingespart und die Umwelt geschont«, bekräftigt die Juniorprofessorin.